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Acute respiratory distress syndrome: causes, 
pathophysiology, and phenotypes
Lieuwe D J Bos, Lorraine B Ware

Acute respiratory distress syndrome (ARDS) is a common clinical syndrome of acute respiratory failure as a result of 
diffuse lung inflammation and oedema. ARDS can be precipitated by a variety of causes. The pathophysiology of 
ARDS is complex and involves the activation and dysregulation of multiple overlapping and interacting pathways 
of injury, inflammation, and coagulation, both in the lung and systemically. Mechanical ventilation can contribute to 
a cycle of lung injury and inflammation. Resolution of inflammation is a coordinated process that requires 
downregulation of proinflammatory pathways and upregulation of anti-inflammatory pathways. The heterogeneity of 
the clinical syndrome, along with its biology, physiology, and radiology, has increasingly been recognised and 
incorporated into identification of phenotypes. A precision-medicine approach that improves the identification of 
more homogeneous ARDS phenotypes should lead to an improved understanding of its pathophysiological 
mechanisms and how they differ from patient to patient.

Introduction
Acute respiratory distress syndrome (ARDS) is a clinical 
syndrome of diffuse lung inflammation and oedema that 
commonly causes acute respiratory failure. ARDS was 
identified in 10·4% of intensive care unit admissions in 
2016.1 Global awareness of ARDS has been heightened 
during the COVID-19 pandemic due to a sharp increase in 
the incidence of ARDS. This Series paper describes the 
current understanding of the pathophysiology of ARDS 
and summarises new developments in the identification 
of more homogeneous phenotypes within this highly 
heterogeneous clinical syndrome. The diagnosis and 
treatment of ARDS is reviewed in another paper in this 
Series.

Precipitating disorders 
Traditional causes of ARDS 
ARDS can be precipitated by a variety of causes including 
both infectious and non-infectious triggers; these triggers 
can injure the lung directly due to local inflammation, or 
indirectly as a result of systemic inflammatory and injury 
mediators (figure 1). Sepsis is the most common cause of 
ARDS,1 and both pulmonary sepsis from a variety of 
pathogens and non-pulmonary sepsis can lead to ARDS, 
with pulmonary sepsis (ie, pneumonia) being the most 
common cause. Among the non-infectious causes, 
pancreatitis, aspiration of gastric contents, and severe 
traumatic injuries with shock and multiple transfusions 
are the most common. Although not specific causes of 
ARDS, some exposures can increase the likelihood of 
developing ARDS from an inciting condition including 
alcohol use,2 cigarette smoking,3,4 and exposure to ambient 
air pollutants.5,6 Blood product transfusion can both cause 
ARDS (ie, transfusion-related acute lung injury)7 and 
increase risk in the setting of an inciting factor.8 Genetic 
heterogeneity might also increase the risk, but most 
identified variants are uncommon and attributable risk is 
small.9 Among more common genetic variants, the 

haptoglobin variant Hp-2, which has an allele frequency of 
approximately 60% in those with European ancestry, is 
associated with increased risk of ARDS in sepsis.10 Of note, 
most studies of the causes of ARDS have been done in 
high-income countries with patients predominantly of 
European ancestry; other causes might contribute to 
ARDS incidence elsewhere. 

Emerging causes 
Since 2000, the pattern of disorders that incite ARDS has 
changed. Traumatic injury as the inciting cause for ARDS 
has decreased due to changes in mechanical ventilation, 
crystalloid resuscitation, and transfusion strategies. In 
2018, e-cigarette and vaping-associated lung injury 
emerged as a new cause of ARDS that predominantly 
affects young, healthy users of e-cigarettes and other 
vaporised substances.11–13 Drug-induced ARDS can be 
caused by a variety of agents; chemotherapeutics are 
commonly implicated and immunotherapies including 
checkpoint inhibitors are an increasing cause of acute 
lung injury.14 Viral pneumonia has been recognised as a 
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Search strategy and selection criteria

We searched PubMed and the references from relevant 
articles from Jan 1, 2000 to April 30, 2022. Although we 
primarily included articles published since 2017, we also cite 
relevant reviews, commonly referenced older publications, 
and articles of historical importance. For the review of papers 
related to subphenotypes of acute respiratory distress 
syndrome we searched PubMed using the following terms: 
((“sub-phenotype”[All Fields] OR “phenotype”[All Fields] OR 
“morphology”[All Fields] OR “subphenotype”[All Fields]) 
AND (“respiratory distress syndrome”[MeSH Terms] OR 
“ards”[Title/Abstract] OR “acute respiratory distress 
syndrome”[Title/Abstract] OR “ALI”[Title/Abstract] OR “acute 
lung injury”[Title/Abstract]).
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cause since the first description of ARDS,15 but strains 
that are more likely to cause ARDS emerge periodically. 
These include SARS-CoV (2003), H1N1 influenza (2009), 
MERS-CoV (2012), and most notably the SARS-CoV-2 
virus (2019) that led to the COVID-19 pandemic, which as 
of this report has already killed at least 6 million people 
globally, the majority via ARDS.16

Pathophysiology 
The pathophysiology of ARDS is complex and our 
understanding is incomplete due to the inherent 
limitations of animal models for ARDS and the challenges 
of mechanistic studies in humans, particularly during 
acute critical illness. Mechanisms of ARDS include 
activation and dysregulation of multiple overlapping and 
interacting injury response pathways, inflammation, and 
coagulation both in the lung and systemically.17 
Importantly, many of these pathways are central to the 
normal host response to infection or injury, but excessive 
and diffuse activation is harmful. The degree of lung 
versus systemic involvement and the degree to which 
specific pathways are involved in individual patients is 
variable and contributes to the clinical and biological 
heterogeneity of ARDS. Approaches to reduce ARDS 
heterogeneity through phenotyping are discussed in the 
second half of this review.

The classic pathological finding in the lung is diffuse 
alveolar damage, although it is only identified in around 
45% of post-mortem lung specimens from patients with a 
clinical diagnosis of ARDS.18,19 Diffuse alveolar damage is 
characterised by neutrophilic alveolitis and hyaline 
membrane deposition. Other pathological findings in 

autopsy series include bilateral pneumonia, and less 
common conditions such as diffuse alveolar hemorrhage.19 
In diffuse alveolar damage, hyaline membranes are fibrin-
rich proteinaceous deposits that form along the denuded 
alveolar basement membrane in areas of substantial 
epithelial lung injury. Ultrastructural studies have clearly 
delineated the importance of lung epithelial and 
endothelial injury in ARDS,20 establishing injury to the 
alveolar–capillary barrier as having a key role in ARDS 
pathophysiology. However, the prevalence of 
histopathological patterns in ARDS is uncertain, as lung 
biopsies are only taken in selected instances of non-
resolving ARDS and autopsy findings only represent the 
severely ill minority who do not survive.21 Comprehensive 
histopathological findings in large numbers of patients 
with acute ARDS are not available. 

Injury to the lung’s epithelial and endothelial barriers 
The alveolar–capillary barrier is made of thin layers of 
alveolar epithelial cells and capillary endothelial cells; 
these layers are separated only by a thin basement 
membrane to facilitate gas exchange. Injury to both layers 
of the alveolar–capillary barrier is typical of ARDS and 
directly contributes to the characteristic physiological 
abnormalities (figure 2).17 

The lung epithelium is composed of a tight layer of 
flat alveolar epithelial type I cells with interspersed 
alveolar epithelial type II cells. The severity of lung 
epithelial injury is an important determinant of survival 
in patients with ARDS.22 In ARDS, lung epithelial injury 
can vary in severity. Injury ranges from epithelial 
activation with expression of adhesion molecules and 
activation of proinflammatory and procoagulant 
pathways, small increases in paracellular permeability 
due to injury to intercellular junctions, or frank necrosis 
of epithelial cells with denuding of the alveolar 
basement membrane (figure 2). Damage to the tight 
lung epithelial barrier facilitates alveolar flooding and 
impairs the transport of fluid by the alveolar epithelium, 
the normal mechanism for maintaining a dry airspace.23 
Injury to type II cells might impair surfactant 
production;24 surfactant can also be inactivated by 
alveolar flooding.25 Disease-associated molecular 
patterns are released into the airspace due to necrosis of 
lung epithelial cells with leakage of intracellular 
contents, which can amplify proinflammatory 
signalling.26 Concomitant injury and shedding of the 
lung epithelial glycocalyx, a layer of glycosaminoglycans 
and proteoglycans that covers the alveolar surface, is 
also proinflammatory.27 Activation and injury of the 
alveolar epithelium also leads to the shedding of 
anticoagulant molecules and the release of tissue factor 
from the lung epithelium into the alveolar space.28,29 
These changes favour intra-alveolar fibrin formation, 
which drives hyaline membrane formation. The alveolar 
epithelium is an important barrier against pathogens 
and can secrete antibacterial proteins such as surfactant 

Figure 1: Causes of acute respiratory distress syndrome
Acute respiratory distress syndrome (ARDS) can result from indirect, extrapulmonary or direct, pulmonary lung 
injury. The most common extrapulmonary risk factors for ARDS are sepsis, pancreatitis, and trauma, while 
pneumonia and aspiration are the most common pulmonary risk factors; among all risk factors pneumonia (non-
pulmonary sepsis) is the most common.
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proteins A and D;30 therefore, epithelial injury can also 
increase susceptibility to secondary infection. 

The capillary endothelium forms the barrier between 
circulating blood cells and plasma and the lung 
interstitium and airspace. Injury to the lung endothelium 
is a key feature of ARDS and is characterised by the 
formation of gaps between endothelial cells and 
upregulation of adhesion molecules such as P-selectin 
and E-selectin and endothelial injury mediators such as 
angiopoietin-2.31–33 A variety of stimuli can trigger 
endothelial injury including circulating pathogens or 
their products, endogenous disease-associated molecular 
patterns, proinflammatory cytokines, and cell-free 
haemoglobin.34 Severe injury to the lung epithelium can 
also trigger injury to the lung endothelium. Although the 
mechanisms are not well understood, direct cell-to-cell 
communication and transfer of reactive oxygen species 
between lung epithelial and endothelial cells probably 
contribute.35 As with the lung epithelium, the endothelium 
is covered with a glycocalyx that is easily injured and 
shed, exposing adhesion molecules and favouring 
oedema formation.36 Endothelial injury causes the 
shedding of anticoagulant molecules on the endothelial 
surface such as thrombomodulin and the endothelial 
protein C receptor, and upregulation of procoagulant 
molecules favouring microvascular thrombus formation.37 

Physiological consequences of injury to the alveolar–
capillary barrier 
Injury to the lung’s epithelial and endothelial barriers has 
direct physiological consequences, which are responsible 
for the typical changes in gas exchange, work of breathing, 
and radiographical findings (table 1) in ARDS. The 
increased permeability of the lung’s endothelial and 
epithelial barriers precipitates alveolar flooding due to 
leakage of protein-rich pulmonary oedema from the 
vasculature into the airspaces. Alveolar flooding is further 
exacerbated by the breakdown of normal transport 
mechanisms for alveolar epithelial fluid, which normally 
would compensate by pumping alveolar oedema into the 
interstitium, to be reabsorbed into the circulation and 
cleared via the lymphatics.38 Alveolar flooding has major 
consequences including severe impairment of gas 
exchange due to ventilation–perfusion mismatch and 
shunt, inactivation of surfactant leading to 
microatelectasis and end-expiratory alveolar collapse, and 
decreased lung compliance requiring higher inspiratory 
pressures and increased work for breathing. Activation of 
procoagulant pathways on the lung’s endothelium can 
lead to lung microvascular thromboses which increase 
dead space; increased dead space ventilation contributes 
to severe gas-exchange impairments and is associated 
with higher mortality in ARDS.39 Microvascular 
thromboses and severe damage to the microvascular bed 
can lead to pulmonary arterial hypertension and acute 
right ventricular dysfunction, both of which contribute to 
poor clinical outcomes.40 

Lung and systemic inflammation 
Both local and systemic acute inflammation are 
prominent features of ARDS that contribute to lung 
epithelial and endothelial injury. Neutrophils are not 
normally found in healthy airspaces. Early in the course 
of ARDS, neutrophils migrate from the lung vasculature 
into the airspace and can release a variety of injurious 
mediators including reactive oxygen species, proteases, 
and proinflammatory lipid-derived mediators such as 
prostaglandins and leukotrienes.41 Neutrophilic 
extracellular traps composed of DNA, histones, and 
proteases are also released into the airspace during these 
pathophysiological processes and can increase 
inflammation by activating the NRLP3 inflammasome, 

Figure 2: Injury to alveolar–capillary barrier
(A) The normal alveolar–capillary membrane is a barrier that prevents the development of alveolar oedema. With 
the progression from mild (B) to severe injury (C), the alveolar–capillary barrier becomes more permeable, leading 
to alveolar oedema. ENaC=epithelial sodium channel. PMN=polymononuclear cells. RBC=red blood cell. 
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which initiates local release of interleukin-1-β and 
interleukin-18.42 

Neutrophil recruitment is mostly done by tissue-
resident and recruited macrophages.43 Macrophage 
pattern recognition receptors bind disease-associated or 
pathogen-associated molecular patterns, which activate 
macrophages to a proinflammatory phenotype leading to 
the release of proinflammatory cytokines and neutrophil 
chemoattractants such as interleukin-8. Lung epithelial 
cells can also release neutrophil chemoattractants.44 
Neutrophils enter the lung mostly through the capillary 
wall, in response to chemoattractant gradients, moving 
paracellularly between endothelial cells and alveolar 
epithelial cells in pathways that appear to be regulated by 
interstitial fibroblasts,41 although transcytosis has also 
been observed. 

In addition to macrophages, current evidence suggests 
that an array of immune cells, including lymphocyte 
subsets and dendritic cells,45 along with networks of 
cytokines, regulate intra-alveolar inflammation in 
ARDS.46 In addition to lung inflammation, systemic 
inflammation is common in patients with ARDS and 
probably contributes to the common occurrence of non-
pulmonary organ failure in ARDS. Interactions between 
the lung and other organs such as the kidneys47 and the 
brain48 might also contribute to non-pulmonary organ 
dysfunction; both kidney and brain injury are associated 
with poor short-term and long-term outcomes for 
ARDS.49 

Role of mechanical ventilation in propagating lung injury 
The recognition that mechanical ventilation for treatment 
of ARDS contributes to a cycle of lung injury and 
inflammation has revolutionised care for patients with 
ARDS. In experimental studies, ventilation of the normal 
lung with high volumes and pressures can induce acute 
lung injury that replicates the pathophysiological features 
of ARDS.50 Mechanical ventilation can also exacerbate 
lung injuries in experimental settings, enhancing both 
inflammation and oedema.51 This is now well validated in 
human ARDS, for which it is established that ventilation 
with high tidal volumes or high inspiratory pressures or 

both can exacerbate acute lung injury by a process that is 
termed ventilator-induced or ventilator-associated lung 
injury. 

Several mechanisms of ventilator-induced lung injury 
have been described.52 Given the regional heterogeneity 
of injury within the lung,53 and the regional variability of 
stressors applied to the lung by mechanical ventilation, 
different mechanisms of ventilator-induced lung injury 
probably affect the lung simultaneously. Volutrauma 
and barotrauma are physiologically coupled and refer to 
lung injury from overdistension and elevated 
transpulmonary pressures.52 In ARDS, volutrauma and 
barotrauma result from decreased compliance of the 
injured lung and the inhomogeneity of alveolar 
consolidation in ARDS such that some areas, usually the 
dependent areas, cannot participate in alveolar 
ventilation. This concept, that only a small proportion of 
the lung parenchyma participates in alveolar ventilation 
in ARDS, has been termed baby lung.54 Although the 
concept of ventilator-induced lung injury focuses on the 
injurious effects of mechanical ventilation, the same 
injury pathways might be activated by vigorous 
spontaneous inspiratory efforts, which produce elevated 
transpulmonary pressures on the basis of very negative 
pleural pressures.55 

On a cellular level, repetitive cyclic stretching of the 
lung epithelium activates mechanosensitive pro
inflammatory pathways with the production of cytokines 
and chemokines. Cyclic stretch can cause the formation 
of gaps between epithelial cells, the detachment of cells 
from the basement membrane, and cell death. In 
experimental models of ventilator-induced lung injury, 
both lung endothelial and epithelial cells show stretch-
induced cytosolic calcium oscillation, which alters 
alveolar ATP production.56 Mechanical stretch also 
impairs alveolar epithelial fluid transport.57 End-expiratory 
collapse of alveoli leading to repetitive opening and 
closing of alveoli can also injure the lung. This form of 
ventilator-induced lung injury, termed atelectrauma, is a 
result of the loss of normal surfactant function due to its 
impaired production and inactivation by alveolar flooding. 
Repetitive opening and closing of alveoli is thought to 

Physiological manifestations Clinical findings

Alveolar–capillary barrier injury with 
interstitial and alveolar oedema formation

Decreased lung compliance Increased work of breathing

Diffuse alveolar filling Ventilation perfusion mismatch and shunt Severe hypoxaemia with diffuse bilateral radiographic 
opacities

Surfactant inactivation and decreased 
production

End-expiratory alveolar collapse Favourable response to positive end-expiratory 
pressure

Platelet and endothelial activation with lung 
microvascular thrombosis, and obstruction 
or destruction of the lung vascular bed

Increased dead space ventilation and pulmonary 
arterial hypertension

High minute ventilation, hypercarbia, right heart 
failure

Leak of lung inflammatory mediators into 
systemic circulation

Systemic inflammatory response syndrome Multi-organ dysfunction

Table 1: How the cellular and molecular mechanisms of acute respiratory distress syndrome lead to the characteristic physiological and clinical findings
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exacerbate lung injury by exposing the distal airspaces to 
high shear stress, which causes direct mechanical injury 
to the lung epithelium.58 

Ventilator-induced lung injury can also have systemic 
consequences.52 Proinflammatory cytokines and 
chemokines, which are further augmented in the injured 
lung by injurious mechanical ventilation, can enter the 
systemic circulation and contribute to the systemic 
inflammatory response and to non-pulmonary organ 
failure.59,60 Delivery of mechanical ventilation at high 
volumes and pressures also increases intrathoracic 
pressure. The resulting impairment in cardiac filling can 
reduce cardiac output and cause hypotension and shock. 

Resolution, repair, and fibrosis 
Resolution of ARDS is a multifaceted process that 
includes removal of inflammatory cells and cytokines, 
clearance of alveolar oedema, and repair of the alveolar–
capillary barrier (panel). Resolution of inflammation is a 
coordinated process that requires downregulation of pro-
inflammatory pathways and upregulation of anti-
inflammatory pathways. T-regulatory cells have a vital 
role in coordinating this process.46 Neutrophils are 
cleared from the airspace through apoptosis and 
phagocytic clearance by alveolar macrophages.61 
Proresolving mediators, including lipoxins and resolvins, 
are a family of bioactive lipid mediators that might also 
have a role in resolution of lung injury and inflammation.62 

Resolution of pulmonary oedema requires a change in 
the balance of oedema formation and oedema clearance 
to favour net alveolar fluid removal. Both the severity of 
injury to the alveolar–capillary barrier and the degree of 
elevation of microvascular pressure contribute to oedema 
formation;63 reversal of barrier hyperpermeability and 
restoration of normal microvascular pressures reduce 
the forces that favour oedema formation.64 Restoration of 
alveolar epithelial fluid transport requires the 
regeneration of the alveolar epithelium, which can be 
necrotic in ARDS. Several cells can act as progenitors to 
repopulate the epithelium, and their relative roles might 
depend on the severity of epithelial injury.65,66 Once a tight 
epithelial barrier is restored, various endogenous factors 
can upregulate alveolar fluid clearance, including 
catecholamines and corticosteroids.67 

The role of interstitial cells, such as fibroblasts, in the 
acute and resolution phases of ARDS is poorly understood, 
reflecting the difficulty of studying the interstitial 
compartment, particularly in humans. Profibrotic 
pathways are triggered as early as the first day of ARDS 
and can lead to lung fibrosis. Fibrosis can impede ventilator 
weaning, and cause long-term impairment of lung 
function with restrictive physiology and decreased 
diffusing capacity. Post-ARDS lung fibrosis used to be 
common, but has declined since 2000 with the adoption of 
lung-protective ventilation, suggesting that ventilator-
induced lung injury was a major contributor to the 
activation of profibrotic pathways. With the SARS-CoV-2 

pandemic, however, post-ARDS fibrosis has increased as a 
consequence of severe COVID-19 ARDS. This increase in 
post-ARDS fibrosis might reflect the high severity and 
extended duration of ARDS in some COVID-19 patients, 
which leads to refractory hypoxaemia that is difficult to 
manage without causing ventilator-induced lung injury.68 

Phenotyping ARDS
ARDS has been discussed in the previous sections as one 
clinical syndrome with distinct causes, but a common 
pathophysiology culminating in protein-rich pulmonary 
oedema. There is ample evidence, however, that ARDS is 
both clinically and biologically heterogeneous. Since the 
original description of ARDS in 1967, there have been 
discussions about the right way to subcategorise ARDS 
patients.69,70 The major advantage of not subcategorising 
patients with ARDS and instead using a simple 
syndromic definition is that clinical recognition is 
increased and treatment strategies can be evaluated in 
large clinical trials. Trials in large cohorts of 
heterogeneous ARDS patients reduced mortality from 
ARDS by proving the value of low tidal volume,71 
restrictive fluid strategy,64 and prone positioning72 as 
supportive therapies. Pharmacological interventions, 
however, have not given clear survival benefits in 
unselected ARDS populations.73 These null results can be 
attributed to the substantial heterogeneity that is 
observed among patients fulfilling ARDS criteria.74 The 
subcategorisation of these patients further into more 

Panel: Pathways that restore homoeostasis in the 
resolution of acute respiratory distress syndrome

Resolution of inflammation 
•	 Neutrophil apoptosis and clearance remove excess 

neutrophils from airspace
•	 Alveolar macrophage phenotypes shift from 

proinflammatory to anti-inflammatory
•	 Change of lung lymphocyte populations to T-regulatory 

cells, which orchestrate recovery
•	 Chemokine and cytokine balance shifts from 

proinflammatory to anti-inflammatory
•	 The profile of lipid mediators in the airspace transitions 

from proinflammatory leukotrienes and prostaglandins to 
proresolving lipid mediators such as lipoxins and resolvins

Restoration of the alveolar–capillary barrier
•	 Lung epithelial growth factors trigger epithelial 

regeneration through replication and differentiation of 
resident lung stem-cell populations 

•	 Restoration of lung epithelial integrity restores alveolar 
epithelial fluid transport allowing clearance of alveolar 
oedema

•	 Balance of endothelial injury and repair mediators shifts 
from proinjury angiopoietin-2 dominant to prorepair 
angiopoietin-1 dominant 

•	 Restoration of lung endothelial and epithelial glycocalyces 
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homogeneous groups is referred to as phenotyping, the 
promise of which is that a more precise intervention can 
be delivered.75 The benefit of a more targeted intervention 
must be weighed against the risk of creating ever smaller 
and rarer subgroups, making both clinical trials and 
patient care increasingly complicated.76,77 

Phenotypes, subphenotypes, and endotypes 
ARDS can be split into subgroups based on clinical, 
imaging, physiological, or biomarker data (table 2). 
Division of the ARDS population on any criterion, 
however arbitrary, generates a subgroup. However, these 
only qualify as subphenotypes when they are reliably 
discriminable. For example, an arbitrary cutoff of a single 
variable always provides two subgroups, but patients at 
the border of this cutoff will commonly change groups 
upon remeasurement. Therefore, data-driven approaches 
in a multivariate space are typically needed to discern 
reliably distinct subgroups.78 A subphenotype is referred 
to as an endotype when it is defined by a distinct functional 
or pathobiological mechanism, and preferably responds 
differently to a targeted therapy compared with patients 
who do not have that endotype.75 

Subphenotypes and endotypes improve our 
understanding of ARDS by identifying subgroups of 
patients that share a common pathophysiology and their 
use might ultimately result in the identification of 
treatable traits.79 Phenotyping can increase our 
understanding of ARDS pathophysiology and be used to 
improve clinical trial design in two ways.75,80 First, 
preferential inclusion of a subphenotype with a higher 
likelihood of developing the primary outcome provides an 
increase in statistical power, even when the relative risk 
reduction of the studied intervention is unchanged. This 
method is referred to as prognostic enrichment and has 
been successfully made use of in studies of pulmonary 
and critical care medicine (figure 3). Second, selective 
inclusion of patients with an endotype who are randomly 
assigned to receive an intervention that targets that 
endotype, will probably benefit more than an unselected 
population. This potential improvement in relative risk 
reduction by patient selection is called predictive 
enrichment (figure 3). 

Subphenotypes by cause 
ARDS can be incited by different pulmonary and 
extrapulmonary risk factors (figure 1). Patients with 
direct pulmonary causes have more alveolar epithelial 
injury and alveolar inflammation than patients with 

Definition Classification of a patient

Phenotype Clinically observable set of traits resulting from an interaction of genotype and 
environmental exposures

ARDS

Subgroup A subset of patients in a phenotype, based on any cutoff in any variable; this cutoff 
can be arbitrary and frequently patients fall just on either side of it resulting in 
patients switching subgroups

ARDS with low PaO2:FiO2

Subphenotype Subgroup that can be reliably discriminated from other subgroups based on a 
data-driven assessment of a multidimensional assessment of traits

Hyperinflammatory subphenotype

Endotype Subphenotype with distinct functional or pathobiological mechanism, which 
preferably responds differently to a targeted therapy

Unknown

Differences between a subgroup, subphenotype, and endotype are sometimes arbitrary. ARDS=acute respiratory distress syndrome. PaO2=partial pressure of arterial 
oxygen. FiO2=inspired fraction of oxygen.

Table 2: Nomenclature frequently encountered in describing the heterogeneity of acute respiratory distress syndrome

Figure 3: Prognostic and predictive enrichment examples in respiratory and critical care
The x axis shows prognostic enrichment, which leads to an increase in the frequency of the primary endpoint 
resulting in a higher absolute risk reduction at a similar relative risk reduction in the enriched population. The y axis 
shows predictive enrichment, which leads to an improvement in the relative risk reduction resulting in a higher 
absolute risk reduction independent of the frequency of the primary endpoint in the enriched population. The pink 
circles show the extent of prognostic and predictive enrichment for each of the examples given in table 2. 
ARDS=acute respiratory distress syndrome. EGFR=epidermal growth factor receptor. NSCLC=non-small-cell lung 
cancer. PEEP=positive end-expiratory pressure.
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indirect non-pulmonary causes.81 For example, caspase-
1-dependent pathways in the alveolar space are 
particularly upregulated in patients with pulmonary 
causes of ARDS.82 When an extrapulmonary risk factor 
leads to ARDS, endothelial injury and systemic 
inflammation are increased.81,83 Given that extrapul
monary causes of ARDS affect the whole lung via 
endothelial dysfunction rather than the more localised 
injury expected in a direct pulmonary cause, a more 
diffuse injury pattern is common, which might result in 
a better response to lung recruitment strategies such as 
increased positive end-expiratory pressure.84 Biological 
and physiological heterogeneity between pulmonary and 
extrapulmonary risk factors for ARDS has been a focus 

of research for decades, but has not resulted in 
therapeutic breakthroughs. 

By contrast, substantial progress has been made in the 
prevention of ARDS for different specific causes. Plasma 
transfusion from female donors rather than male donors 
was identified as a major risk factor for transfusion-related 
acute lung injury;85,86 use of male-only fresh-frozen plasma 
has substantially decreased transfusion-related acute lung 
injury.87,88 Patients with severe traumatic injuries are at 
high risk for ARDS, probably due to additive injury from 
haemorrhagic shock, mechanical ventilation, resuscitation, 
and multiple blood transfusions,85,89 and changes in how 
these interventions are done can reduce the prevalence of 
hospital-acquired ARDS.90

Figure 4: Systemic versus alveolar inflammation in the development of acute respiratory distress syndrome
Systemic and alveolar inflammation are not necessarily correlated in patients with acute respiratory distress syndrome (ARDS). The panels show differences between 
systemic hypoinflammatory (A, C) and hyperinflammatory (B, D) inflammation, and the differences between alveolar hypoinflammatory (A, B) and hyperinflammatory 
(C, D) inflammation. Although these panels illustrate the extreme situations of systemic without alveolar inflammation and alveolar without systemic inflammation, 
the severity of systemic and alveolar inflammation exists on a spectrum that probably varies considerably from patient to patient, contributing to heterogeneity. 
(A) The normal alveolus, without inflammation or injury. (B) The changes observed in the hyperinflammatory subphenotype, which is characterised by systemic 
inflammation, endothelial dysfunction, and coagulation. Without alveolar inflammation, the injury caused by inflammation is driven from the systemic compartment 
towards the alveolar compartment (yellow arrow), resulting in increased permeability and alveolar oedema. (C) The changes in patients with alveolar 
hyperinflammation without a systemic hyperinflammatory subphenotype. Alveolar epithelial cells, alveolar macrophages, and neutrophils have a central role in 
proinflammatory cytokine production. Epithelial cells and macrophages are essential in production of proinflammatory molecules. Neutrophils produce various 
injurious molecules that damage type 1 and type 2 pneumocytes resulting in increased levels of pneumocyte injury markers. Without systemic inflammation, the injury 
caused by inflammation in this scenario is driven from the alveolar towards the systemic compartment (yellow arrow), also resulting in increased permeability and 
alveolar oedema. (D) The combined presence of systemic and alveolar hyperinflammation. Under these circumstances, inflammation induces lung injury, increased 
permeability, and alveolar oedema from both directions. ANG2=angiopoietin-2. ARDS=acute respiratory distress syndrome. CC16=clara cell protein. IL=interleukin. 
KL-6=Krebs von den Lungen-6. MMP=matrix metalloproteinase. NET=neutrophil extracellular trap. PAI-1=Plasminogen activator inhibitor-1. ROS=reactive oxygen 
species. sRAGE=soluble receptor for advanced glycation end products. Sp-D=surfactant protein-D. TNF=tumour necrosis factor. TNFR1=TNF receptor 1. 
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COVID-19-related ARDS, in which immune dysfunction 
drives the development of ARDS, exemplifies the value of 
assessing a sufficiently homogeneous population for 
effective targeted pharmacological treatment through 
predictive enrichment.91,92 For the most part, patients with 
ARDS unrelated to COVID-19 have not responded 
favourably to anti-inflammatory approaches; by contrast, 
patients with COVID-19-related ARDS showed benefit 
from corticosteroid treatment in the RECOVERY trial.93 
Patients with COVID-19 who require respiratory support 
with high flow nasal cannula or non-invasive ventilation 
benefited from early administration of interleukin-6 
inhibitors94 and inhibitors of the Janus kinase–signal 
transducers and activators of transcription (JAK–STAT) 
pathway,95 suggesting that immunomodulation prevented 
further lung injury. 

Biological subphenotypes 
In 2014, hypoinflammatory and hyperinflammatory 
subphenotypes of ARDS were identified by use of latent 
class analysis. This modelling strategy identified two 
homogeneous subgroups using a dataset that included 
clinical characteristics and plasma biomarkers of 
proinflammatory host response from two ARDS clinical 
trial populations.96 The hyperinflammatory subphenotype 
had higher plasma concentrations of IL-6, IL-8, and 
tumour necrosis factor receptor-1, and lower 
concentrations of bicarbonate and protein-C than the 
hypoinflammatory subphenotype. Patients with the 
hyperinflammatory subphenotype had extrapulmonary 
sepsis as a risk factor for ARDS more frequently than 
those who were hypoinflammatory, and more often 
required vasopressors, confirming findings from research 
into subphenotypes that are based on underlying cause; 
however, sepsis or use of vasopressors alone was not 
enough to separate the two subphenotypes. 
Hyperinflammatory ARDS patients also stayed longer in 
intensive care units, had fewer ventilator-free days, and 
had higher 90-day mortality, suggesting that the 
hyperinflammatory phenotype might be useful for 
prognostic enrichment. Multiple studies have since 
identified subphenotypes with the same clinical, 
biological, and prognostic characteristics, although 
different descriptors such as reactive and uninflamed 
were used.96–101

Notably, heterogeneity of treatment effect was also 
observed between these biological subphenotypes 
suggesting they might be of value for predictive 
enrichment. Reanalysis of randomised controlled trials 
revealed a differential response to positive end-expiratory 
pressure strategy, fluid strategy, and simvastatin treatment 
between the hypoinflammatory and hyperinflammatory 
subphenotype.96,98,99 The differential treatment effect for 
simvastatin was, however, not seen for rosuvastatin.100 The 
beneficial effects of a higher positive end-expiratory 
pressure ventilation strategy were only observed in 
patients with the hyperinflammatory subphenotype, 

which could be driven by more diffuse injury to the lung 
in the setting of systemic proinflammatory response. To 
facilitate the rapid identification of the hyperinflammatory 
and hypoinflammatory phenotypes in clinical practice, a 
parsimonious biomarker model and a machine-learning-
derived model based only on clinical data have been 
proposed.102–104 Using the machine-learning model, the 
heterogeneity of treatment effect for positive end-
expiratory pressure was confirmed in an observational 
study.103,104 

The benefit of treatment with simvastatin in the 
hyperinflammatory subphenotype probably comes from 
immunomodulation.105 Patients with the reactive 
subphenotype, which is similar to the hyperinflammatory 
subphenotype in many regards, showed altered blood 
leukocyte response suggestive of profound systemic 
neutrophil activation, which might explain why 
immunomodulation would affect these subphenotypes 
differentially.106,107 The differences in systemic inflammatory 
response that drive the distinction between the 
hypoinflammatory and hyperinflammatory subphenotypes 
in ARDS are not necessarily mirrored in the alveolar host 
response; discordant levels of bronchoalveolar lavage and 
systemic proinflammatory cytokines have been observed.108 
Therefore, inflammatory heterogeneity in ARDS is at least 
two-dimensional; with subphenotypes in systemic and 
alveolar inflammation (figure 4). We need to better 
understand the heterogeneity in alveolar host response, 
how it relates to subphenotypes that are based on 
underlying cause, and its potential for use in predictive 
enrichment. 

Radiological subphenotypes 
Although ARDS is classically characterised by diffuse 
bilateral alveolar infiltrates on chest radiograph, CT has 
identified two distinct subphenotypes of ARDS on the 
basis of radiographic lung morphology. Lungs with diffuse 
and patchy loss of aeration (ie, the non-focal subphenotype) 
respond well to alveolar recruitment strategies with 
improved gas exchange and lung mechanics, while lungs 
with predominant dorsal–inferior consolidations (the 
focal subphenotype) respond better to prone positioning.109 
Importantly, assessment of these morphological 
subphenotypes must be done at 5 cm H2O positive end-
expiratory pressure as a higher positive end-expiratory 
pressure results in alveolar recruitment and an 
underestimation of consolidated lung tissue. CT imaging 
is necessary, as differentiating these phenotypes using 
conventional chest radiography is challenging and can 
result in misclassification.110 Alternatively, lung ultrasound 
algorithms have been developed.111 

In the first randomised controlled trial that used 
predictive enrichment in ARDS, personalised treatment 
based on lung morphology subphenotypes of ARDS was 
compared with standard of care ventilation.110 There was no 
overall mortality benefit for patients randomised to 
mechanical ventilation personalised to lung morphology. 
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Given the infrequent use of CT imaging in the study and 
reliance on chest radiography, 20% of patients were 
misclassified, with poor interobserver agreement in the 
interpretation of chest images. Patients with correctly 
classified lung morphology benefited from a personalised 
ventilation strategy with a 10% decrease in mortality, while 
patients who were misclassified had a substantial increase 
in mortality when exposed to a misaligned personalised 
ventilation strategy.110 The results of this study show that 
accurate classification is imperative before delivering a 
subphenotype-specific intervention. 

Physiological subphenotypes 
Latent class analysis using quantitative CT imaging data 
and physiological characteristics such as shunt fraction 
and dead space ventilation identified two subphenotypes 
with differential responses to lung recruitment.112 Patients 
with the recruitable subphenotype had more dead space, 
more non-inflated or less than normally inflated lung 
tissue on CT, lower compliance of the respiratory system, 
a lower partial pressure of arterial oxygen (PaO2) to 
inspired fraction of oxygen (FiO2) ratio, and a higher risk 
of death. An increase in positive end-expiratory pressure 
from 5 to 15 cm H2O led to greater improvement in lung 
aeration and PaO2:FiO2 in patients with the recruitable 
subphenotype. Furthermore, these patients showed an 
improvement in the compliance of the respiratory system 
and a reduction in dead space ventilation after an increase 
in positive end-expiratory pressure.

All the subphenotyping approaches discussed used 
static data, typically derived within 24–48 hours after 
intubation and therefore ignored dynamic changes that 
could also provide insight into the heterogeneity of 
ARDS. The stability of biological subphenotypes was 
confirmed on day three of mechanical ventilation.113 
Static and dynamic modelling approaches were compared 
in a study of respiratory physiology in patients with 
COVID-19-related ARDS.114 The static approach did not 
yield subphenotypes, irrespective of the time window 
from which the data were derived. An adaptation of latent 
class analysis that can make use of longitudinal data 
identified two subphenotypes driven by dead space 
ventilation and the energy transferred to the patient’s 
respiratory system by the mechanical ventilator 
(mechanical power). This study clearly shows the added 
value of modelling time-dependent variation, in 
understanding ARDS heterogeneity.115

Conclusions and future directions
The spectrum of underlying causes of ARDS indicates 
that clinicians from many disciplines will encounter this 
common clinical problem, particularly with the recent 
10-fold or greater increase in ARDS incidence due to the 
COVID-19 pandemic. Although the pathophysiology of 
ARDS is complex and incompletely understood, we have 
summarised many pathways of injury that are common 
to most patients. Endogenous pathways for resolution of 

ARDS are equally complex, but restore the lung to 
normal or near normal in most patients. 

Current efforts to better identify and understand more 
homogeneous biological and clinical phenotypes of 
ARDS should improve our understanding of 
pathophysiological mechanisms and how they differ 
from patient to patient. However, subphenotyping of 
ARDS will only result in better patient outcomes when 
prospective randomised controlled trials find beneficial 
effects of subphenotype-driven treatment strategies. 
Currently, implementation of subphenotype-targeted 
clinical trials is limited both by the ability to rapidly 
identify biological subphenotypes at the bedside and our 
as yet incomplete understanding of how these 
subphenotypes might be harnessed for predictive 
enrichment. Overcoming these barriers is a central 
focus of current research in the pathophysiology and 
phenotyping of ARDS.
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