Mechanical Ventilation Basics

Normal Respiratory v Mechanical Ventilation

What's different?

Negative pressure
v
Positive Pressure

Respiratory Terminology

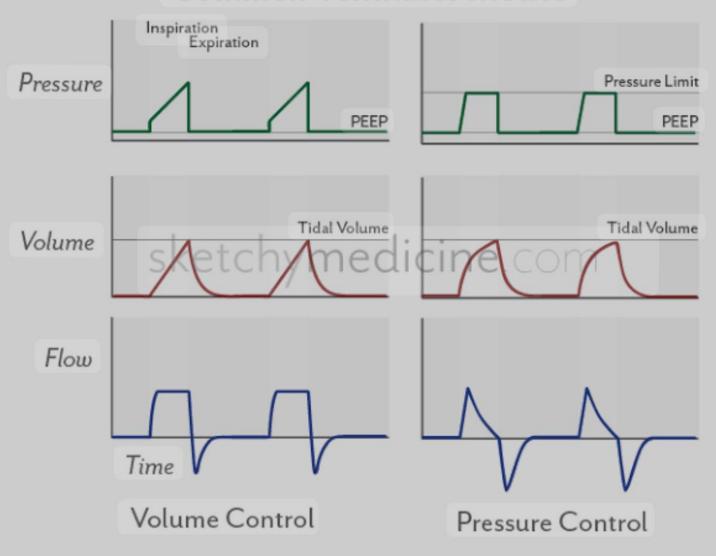
- Compliance: ΔV/ΔP
- Elastance: ΔP /ΔV
- Dead Space: Portion of each breath not involved in gas exchange
 - Anatomic conducting airways (volume)
 - Physiologic anatomic + alveolar dead space
- Functional residual capacity (FRC): Volume air remaining after normal expiration, equilibrium point between lung elastic recoil & expansion of chest wall

Oxygenation v Ventilation

- Oxygenation O2 exchange
 - How we adjust (simplified)?
 - FiO2
 - PEEP
- Ventilation CO2 exchange
 - How we adjust (simplified)?
 - TV
 - RR
 - Aka Minute Ventilation $(V_e) = TV \times RR$
 - Target 5-10 L/min

What are the main categories of ventilator modes?

Main Categories


- Volume Modes
 - Set volume of air delivered (constant tidal volume)
 - Pressure variable
- Pressure Modes
 - Set pressure delivered
 - Volume variable

Changes patient to patient, breath to breath:

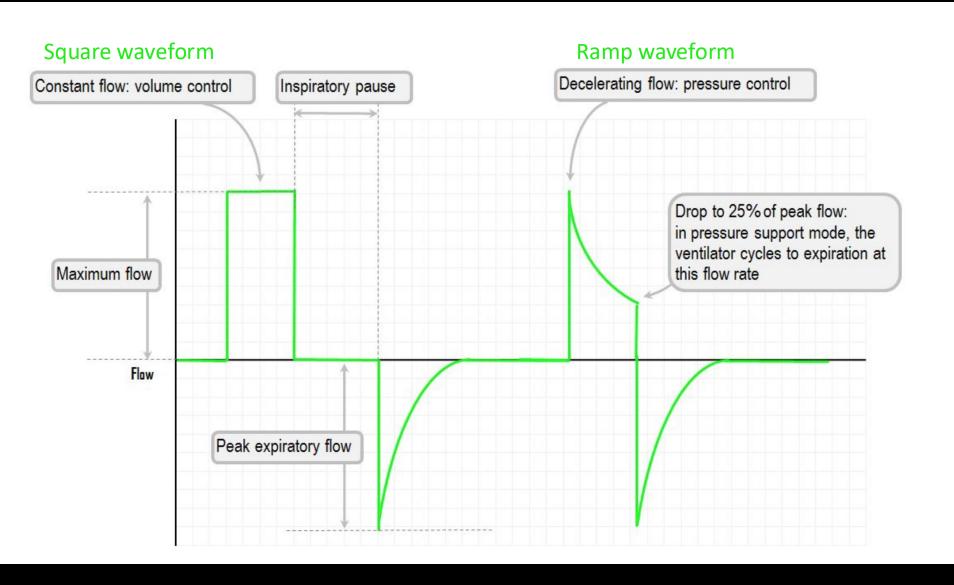
- Anatomy/habitus
- Pulmonary factors (i.e. resistance/compliance)
- Position

*Some advanced modes a hybrid of both

Common Ventilator Modes

Settings (aka things we control)

- Tidal Volume (TV)
 - How obtained depends on mode
 - 6-8ml/kg in nml lungs (IBW)
- Respiratory rate (RR) frequency, breaths per minute
- Oxygen Concentration (FiO2)
- Positive End Expiratory Pressure (PEEP)
 - Constant pressure applied during expiration
 - Increases FRC
- 1:E
 - Typically 1:2
- Inspiratory flow


Other setting terms

- Trigger initiator of breath
 - Machine (time)
 - Person (effort based)
- Target Variable that regulates gas delivery during inspiration
 - flow for volume
 - Inspiratory pressure for pressure
- Cycle goal What terminates inspiration
 - Volume
 - Time
 - Flow

A little more on FLOW:

- Can be constant through inhalation = square waveform
 OR
- Decelerating as breath delivered = ramp waveform
- Square waveform: faster delivery of inspiration, decreasing inspiratory time, increasing expiratory time
 - Useful when longer expiration needed:
 - Asthma, COPD
 - High RR (encourage full exhalation)
- Ramp waveform: Decrease the flow as delivered volume increases
 - More comfortable
 - Better volume distribution and equalization heterogeneous lungs (i.e. ARDS)

A little more on FLOW:

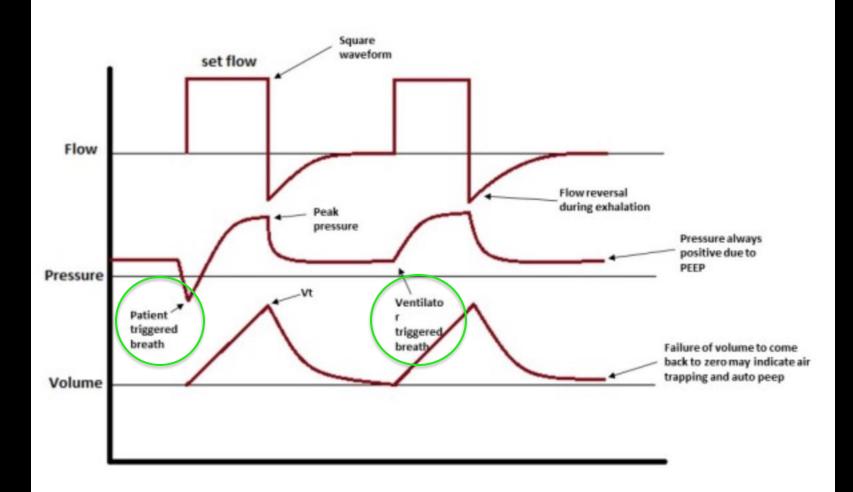
Back to Ventilator Modes

Types of Volume Modes?

- Assist Control Volume Control (ACVC)
- Synchronized Intermittent Mandatory Ventilation (SIMV)

Volume Modes: ACVC

- What do you set?
 - -TV
 - -RR
 - FiO2
 - PEEP
- More advanced
 - **−** l:E
 - Flow


Volume Modes: ACVC

- Assist Control?
 - Adjusts trigger (breath initiator)
 - NO spontaneous breath time initiated breath
 - Spontaneous breathing senses negative inspiratory effort & gives breath
 - Example: RR set to 15
 - No spontaneous breathing RR=15
 - Spontaneous breathing RR=15 plus patient breaths above this rate
- Gives full preset TV regardless of trigger

Volume Modes: ACVC

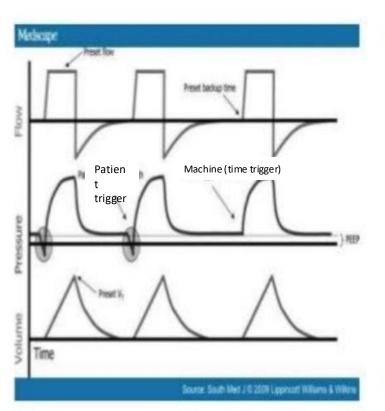
- Gives full preset TV every breath
 - Full control of minute ventilation
 - Useful to manage respiratory/metabolic acidosis
 - Barotrauma risk
 - Uses whatever pressure needed to get volume
 - Non-compliant ("stiff") lungs
 - Tachypneic patients
 - Reduced expiration time breath stacking, auto-PEEP
 - -> hyperinflation, increased pulmonary pressures
 - Hyperventilation respiratory alkalosis
- Recruitment may be poorer in poor compliance
- Discomfort vent synchrony

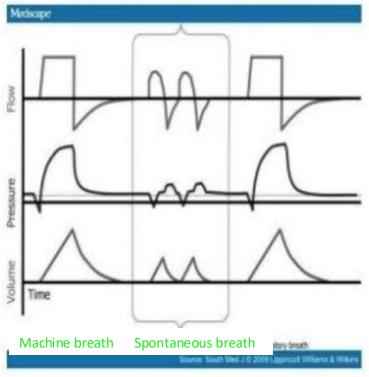
ACVC

Volume Modes: SIMV

- Combines mandatory breaths w/ patient initiated breaths
- What do you set?
 - -TV
 - -RR
 - FiO2
 - PEEP
 - +/- PS (assist with self initiated breaths)

Volume Modes: SIMV


- How is this different from ACVC?
 - Set mandatory breaths (RR) synchronized to patient effort
 - Mandatory breaths give full preset TV (same as ACVC)
 - Spontaneous breaths patient determined TV (different than ACVC)
 - Can add PS
- If NO spontaneous breathing same as ACVC


Volume Modes: SIMV

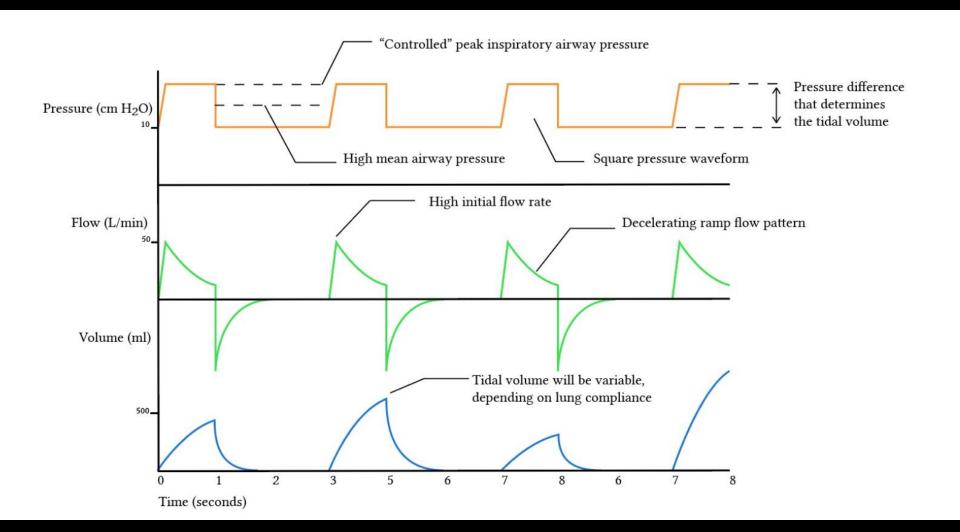
- Guarantees minimum RR with set TV
- Patient can trigger additional breaths (can adjust degree of support)
 - Can increase work of breathing
 - Avoid respiratory alkalosis (tachypneic patient)
- Improved patient comfort (synchronization)?
- Weaning mode?

Assist Control

SIMV

Types of Pressure Modes?

- Pressure Control (PC)
- Pressure Support (PS)
- Airway Pressure Release Ventilation (APRV)


Pressure Modes: PC

- What do you set?
 - Pressure
 - Set to target goal TV range (i.e. 6-8ml/kg)
 - -RR
 - FiO2
 - PEEP
- More advanced
 - I:E

Pressure Modes: PC

- Volume is variable TV can change with airway resistance (aka peak airway pressure) & compliance (aka plateau)
 - Needs close monitoring
 - Risk of hypoventilation (low TV)
 - Risk of volumtrauma (high TV)
- Barotrauma protection (non-compliant lungs)
- Constant airway pressure
 - Improved alveolar distention/recruitment -> oxygenation & dead space ventilation
- Improved patient tolerance/vent synchrony
 - Flow rate variable to patient needs

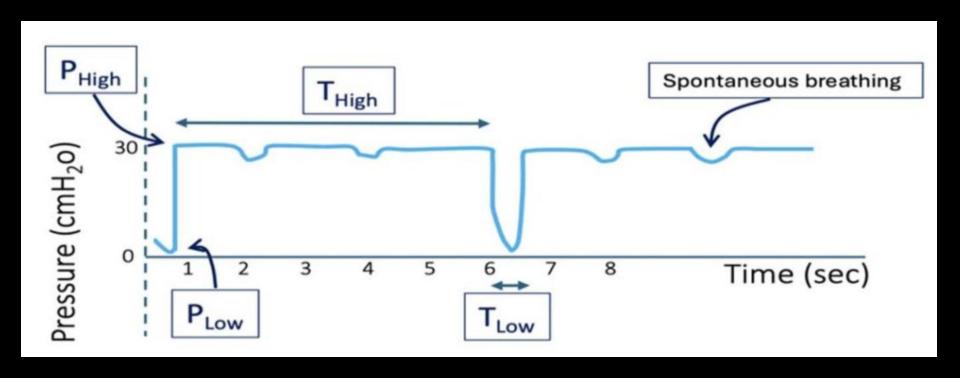
PC

Pressure modes: PS

- Spontaneous breathing
 - Does have a back up RR for apnea
- What do you set?
 - Pressure (inspiratory pressure)
 - Set to target goal TV range
 - FiO2
 - PEEP
- Pressure delivered until inspiratory flow drops below a determined threshold (i.e. 25% of peak flow)

Pressure modes: APRV

- High continuous airway pressure (oxygenation) with brief pressure releases (ventilation)
- Unrestricted spontaneous breathing throughout
- What you set?
 - Pressure high (25-30)
 - Time high
 - Pressure low (0)
 - Time low
 - FiO2
- (I:E usually 7:1 or 10:1)


Pressure modes: APRV

- Improved oxygenation
 - Improved mean airway pressures
 - Alveolar recruitment
- Spontaneous respirations
 - Facilitates gas exchange CO2 clearance
 - Maximizes continued recruitment
 - Ventilation of dependent areas
- Reduced sedation

Pressure modes: APRV

- Requires spontaneous breathing
 - i.e. neuro intact, not on chemical paralysis
- Hypotension with initiation (usually transient)
 - Reduced venous return (Phigh)
 - Patient needs to be fully resuscitated prior
 - Avoid in hemodynamically unstable
- Risk volutrauma
- Can increase work of breathing

APRV

Hybrid Mode: PRVC

- Pressure Regulated Volume Control (PRVC)
 - Lowest inspiratory pressures to achieve set TV
 - Adjusts pressure to achieve TV target
 - Feedback method breath-to-breath
- What you set?
 - $-\mathsf{TV}$
 - Uses plateau pressure from previous breath to calculate inspiratory pressure need to reach set TV for following breath
 - RR (same as VC)
 - FiO2
 - PEEP

Hybrid Mode: PRVC

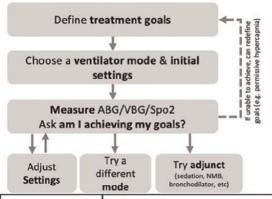
- Best of both worlds???
 - Change in resistance or compliance, pressure will adjust to deliver the desired TV
- PC benefit improved mean airway pressure
 - -> better alveolar distention/recruitment -> oxygenation & dead space ventilation
- VC benefit guaranteed minute ventilation
- Can increase work of breathing in patients with high respiratory drive

Other things

- Peak Inspiratory Pressure: Highest pressure recorded at peak inspiration
 - Plateau p plus additional pressure applied to overcome flow resistance & elastic recoil of the lungs/chest wall
- Plateau pressure: Alveolar pressure applied during the majority of the breath cycle
 - Measure via inspiratory hold
 - Goal ≤30 cm H2O
- Driving pressure: Plateau p PEEP
 - Lung strain
 - 14-18cmH20
- Auto/intrinsic-PEEP: Residual pressure in the circuit at end expiration = Total PEEP (measured with expiratory pause) in the circuit – set PEEP

Causes of increased peak airway pressure

Increased Peak to Plateau Pressure Gradient	Increased Plateau Pressure			
	Decreased lung compliance			
Increased resistance in the ventilator circuit	· ARDS			
 Kinked ventilator tubing 	• Pneumonia			
 Biting on the endotracheal tube 	• Pulmonary edema or hemorrhage			
Obstructed endotracheal tube	 Interstitial lung disease 			
	• Atelectasis			
Increased resistance in the large airways	Decreased pleural space compliance			
Mucous plug	• Pneumothorax			
 Central airway mass or foreign body 	• Pleural effusion			
Increased resistance in the small airways	Decreased chest wall compliance			
• Bronchospasm	• Obesity			
• Asthma	 Musculoskeletal restriction 			
• Chronic obstructive pulmonary disease	 Abdominal distension 			


OVERVIEW OF VENTILATOR MODES by Nick Mark MD

onepagericu.com @nickmmark

Link to the most current version →

Goals for mechanical ventilation:

- Oxygenation support PaO2/SpO2
- 2. Ventilation maintain pH
- 3. Patient comfort vent synchrony, ↓ sedation
- Facilitate weaning minimize muscle loss, promote readiness to wean from support

Ventilator Modes:

Fall into two broad categories: pressure and volume modes. Each mode has three features:

- Trigger (T) what initiates a breath?
- · Cycle (C) what ends a breath?
- Limit (L) what stops a breath early?
 Each mode has Pros and Cons to consider.

Measurement and optimization:

Measure ABG/SpO2 PH / PCO2 / PaO2 / HCO3

ABG

Settings

VENTILATION you want to incre

If you want to increase the pH → increase the ventilation parameters

OXYGENATION

If you want to change the PaO2 or SpO2 adjust oxygenation parameters (FiO2 and PEEP)

- 7	
- 3	
-	3
~	
-	
C	2
=	
	4
C	2
=	•
	4
•	-
_	
C	>
-	4
1000	7 0.7

Mode	Description	Pros	Cons	Major settings / example	Monitor
VC Volume Control (a.k.a. assist control volume)	Every breath delivered (mandatory and patient triggered) is the same set volume (TV) T—time/pressure/flow, C—volume, L—volume	Good general-purpose mode; Ensures a minimum MV is achieved. Good mode for lung protective ventilation (<u>LPV</u>)	Requires you to monitor pressures to avoid barotrauma. (See my <u>OnePager</u> on ARDS for details.)	RR, TV, PEEP, FIO2 12 bpm, 450cc, +8, 60% (RR – respiratory rate, TV – tidal volume)	Pressures (Ppeak, Pplat)
PC Pressure Control (a.k.a. assist control pressure)	Every breath delivered (mandatory & patient triggered) is a set pressure (IP) for a set time (T _i) T - time/pressure/flow, C - time, L - pressure	Good for limiting pressure; may be more comfortable for select patients. Also can be used for LPV (no difference in mortality)	Requires you to monitor volumes to avoid volutrauma or hypoventilation	RR, IP, T _I , Risetime, PEEP, FIO2 12 bpm, 25 cmH ₂ O, 0.9 sec, 0.15 sec, +8, 60% (IP – inspiratory pressure, T _I – inspiratory time)	Volumes (TV, MV)
PRVC Pressure Regulated Volume Control (a.k.a. VC+, APV, Autoflow)	Hybrid PC mode that dynamically changes inspiratory pressure to deliver a desired volume T - time/pressure/flow, C - volume, L - volume	Guarantees TV but delivers pressure-controlled breaths; (e.g. low risk of causing VILI), which potentially may be more comfortable for patients	In patients who are struggling (e.g. high WOB) this mode will provide <i>less</i> support	RR, TV, T _p , Risetime, P _{max} , PEEP, FIO2 12 bpm, 450cc, 0.9 sec, 0.15 sec, 30 cmH ₂ O, +8,60% (P _{max} - maximum pressure)	Pressures & volumes
SIMV Synchronous Intermittent Mandatory Ventilation	Delivers mandatory breaths with a fixed volume but patient can't trigger (patient breaths are not the same as mandatory breaths); can use PS T—time, C—volume, L-volume	May be useful for patients with hiccups to avoid alkalemia	Seldom used; not effective for weaning; often found to be uncomfortable	RR, TV, PEEP, FIO2 12 bpm, 450 cc, +8, 60%	Pressure (Ppeak Pplat)
PS Pressure Support	All breaths are patient initiated; ventilation determined solely by patient (no backup rate). T – pressure/flow, C – flow, L - pressure	Ideal weaning mode (used in SBTs and for prolonged periods); most comfortable because it allows patient to control ventilation	Does not guarantee a rate; need to monitor to ensure adequate ventilation	PS, PEEP, FiO2 Note that PS is above PEEP so "Ten over Five" +10, +5, 40% Note that PS is above PEEP so "Ten over Five" PIP = 15cmH2O	Volumes (TV, MV)
APRV Airway Pressure Release Ventilation (a.k.a. Bi-Vent)	Inverse ratio ventilation (e.g. I time > E time) that allows patient to breath spontaneously; can combine w/ PS T – time, C – time, L - pressure	Great for ARDS patients who are spontaneously breathing (e.g. not on NMB); may improve comfort & oxygenation (but no mortality benefit)	Complex mode/settings; Risk of VILI if settings are done improperly; doesn't make sense if on NMB	T _{High} , T _{Low} , P _{high} , P _{low} , FIO2 5.5 sec, 0.5 sec, 25 cmH ₂ O, 0 cmH ₂ O, 60% (T _{High} / _{low} – time high/low, P _{High} / _{low} – pressure high/low, also note that Plow is analogous to PEEP)	Volumes & gas exchange PCO2 / EtCO2

11